169 | 0 | 37 |
下载次数 | 被引频次 | 阅读次数 |
探究小江流域不同食性鱼类排泄对初级生产养分循环的作用,为三峡库区支流鱼类群落调控及养分再循环提供理论参考。2019年在小江设置5个断面对水质、浮游物、鱼类进行监测和采样,并选取小江4种典型食性鱼类,即滤食性鱼类鳙、草食性鱼类草鱼、杂食性鱼类鲫和肉食性鱼类黄颡鱼,分析其氮磷排泄率的差异及其与温度的关系,通过模型反演估算不同食性鱼类排泄对小江藻类初级生产的贡献。结果表明:(1)滤食性鱼类氮排泄率最高,滤食性鱼类和肉食性鱼类磷排泄率相对较高;(2)不同食性鱼类氮磷排泄率随水温升高均有所增大,且杂食性鱼类氮排泄率受水温变化影响最大,而草食性鱼类磷排泄率受水温变化影响最小(;3)小江鱼类总生物量约11.08 t,氮、磷排泄率分别为16.92、2.11 ng/(L·d)(;4)小江鱼类氮磷排泄对藻类养分循环贡献均较小,分别占初级生产力所需氮、磷含量的0.015%和0.022%(;5)在4种食性鱼类中,肉食性鱼类对初级生产力的贡献率最高。
Abstract:In this study, we investigated the impact of excretions from fish with different feeding habits on primary production and nutrient cycling in Xiaojiang River. Four typical fishes with different feeding habits(filter-feeding bighead carps, herbivorous grass carps, omnivorous crucian carps and carnivorous yellow catfish) were selected as representative species. We first investigated the variation of nitrogen and phosphorus excretion rates of the four species at different water temperatures and analyzed the relationship of excretion rate and temperature, and then we estimated the contribution of nitrogen and phosphorus excretions by each species to primary productivity using model inversion. In 2019, water quality was monitored monthly at five transects in Xiaojiang River, and plankton and fishery resources were surveyed in July. Results show:(1) The nitrogen excretion rate of the filter-feeding species was highest, and the phosphorus excretion rates of the filter-feeding and carnivorous species were highest.(2) The nitrogen and phosphorus excretion rates of all species increased with water temperature, and the nitrogen excretion rate of omnivorous fish was most affected by water temperature, while the phosphorus excretion rate of herbivorous fish was least affected by water temperature.(3) The total biomass of fish in Xiaojiang River was11.08 t, the excretion rate of nitrogen was 16.92 ng/(L·d) and that of phosphorus was 2.11 ng/(L·d).(4)The contribution of nitrogen and phosphorus to the nutrient supply of algae was small in Xiaojiang River,accounting for 0.015% of the nitrogen and 0.022% of the phosphorus required for primary production.(5)Among the four different feeding habits, the carnivorous fish contributed the most to primary production.The results of this study provide a theoretical reference for managing the fish community and nutrient cycling in the tributaries of Three Gorges Reservoir.
陈锦云,陈玉翠,2006.温度对瓦氏黄颡鱼幼鱼氨氮排泄的影响[J].水产科学,25(5):232-235.
国家环境保护总局,2002.水和废水监测分析方法[M].4版.北京:中国环境科学出版社.
江丽华,朱爱意,2009.温度和盐度对美国红鱼耗氧率和排氨率的影响[J].水产养殖,30(10):27-30.
李大鹏,庄平,严安生,等,2005.施氏鲟幼鱼摄食和生长的最适水温[J].中国水产科学,12(3):294-299.
李培培,2012.千岛湖鲢、鳙的生态化学计量学及其驱动的养分再循环[D].上海:上海海洋大学.
李晓洁,2018.生态放养鲢鳙在长寿湖水生态系统氮磷循环中的作用[D].重庆:西南大学.
李晓洁,唐敏,李云,等,2018.鲢鳙在长寿湖水生态系统氮磷循环中的作用[J].淡水渔业,48(3):40-46.
刘鉴毅,宋志明,王妤,等,2015.温度对点篮子鱼幼鱼生长、摄食和消化酶活性的影响[J].海洋渔业,37(5):442-448.
牟洪民,姚俊杰,方贵镇,等,2012.贵阳红枫湖鲢、鳙的食性研究[J].淡水渔业,42(3):44-49.
彭乐根,沈建忠,吉芬芬,等,2021.三峡库区小江太湖新银鱼时空分布[J].水生态学杂志,42(5):103-109.
阮景荣,2005.三种鱼的磷排泄及其在微型生态系统磷再循环中的作用[J].水生生物学报,29(1):55-60.
薛洋,2015.三峡库区水域牧场鲢鳙驱动的氮磷循环研究[D].重庆:西南大学.
张振华,明瑞梁,彭亮,等,2017.南亚热带水体7种常见浮游动物的个体氮、磷含量及其排泄率的比较[J].湖泊科学,29(6):1455-1463.
朱祥宇,高勤峰,董双林,2013.不同温度对草鱼C、N、P营养要素收支的影响[J].水产学报,37(10):1521-1526.
Allgeier J E,Layman C A,Mumby P J,et al,2014.Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems[J].Global Change Biology,20:2459-2472.
Andre E R,Hecky R E,Duthie H C,2003.Nitrogen and phosphorus regeneration by Cichlids in the Littoral zone of Lake Malawi,Africa[J].Journal of Great Lakes Research,29:190-201.
Atkinson C L,Capps K A,Vanni M J,2017.Consumer-driven nutrient dynamics in freshwater ecosystems:from individuals to ecosystems[J].Biological Reviews,92(4):2003-2023.
Booth D J,Poulos D E,Poole J,et al,2013.Growth and temperature relationships for juvenile fish species in seagrass beds:implications of climate change[J].Journal of Fish Biology,84(1):231-236.
Capps K A,Atkinson C L,Rugenski A T,2015.Consumer-driven nutrient dynamics in freshwater ecosystems:an introduction[J].Freshwater Biology,60(3):439-442.
Fang L,Bai X L,Liang X F,2017.Ammonia nitrogen excretion in Mandarin Fish (Siniperca chuatsi) and Grass Carp(Ctenopharyngodon idellus) fed practical diets:the effects of water temperature[J].Aquaculture Research,48(3):836-843.
Friedland K D,Ahrenholz D W,Haas L W,2005.Viable gut passage of cyanobacteria through the filter-feeding fish atlantic menhaden,Brevoortia tyrannus[J].Journal of Plankton Research,(7):715-718.
Griffiths D,2006.The direct contribution of fish to lake phosphorus cycles[J].Ecology of Freshwater Fish,15:86-95.
Higgins K A,Vanni M J,González M J,2006.Detritivory and the stoichiometry of nutrient cycling by a dominant fish species in lakes of varying productivity[J].Oikos,114(3):419-430.
Hillebrand H,Frost P,Liess A,2008.Ecological stoichiometry of indirect grazer effects on periphyton nutrient content[J].Oecologia,155(3):619-630.
Kieffer J D,Wakefield A M,2010.Oxygen consumption,ammonia excretion and protein use in response to thermal changes in juvenile Atlantic salmon Salmo salar[J].Journal of Fish Biology,74(3):591-603.
Liu F G,Yang S D,Chen H C,2010.Effect of temperature,stocking density and fish size on the ammonia excretion in palmetto bass (Morone saxatilis×M.chrysops)[J].Aquaculture Research,40(4):450-455.
Menezes R F,Attayde J L,Vasconcelos F R,2010.Effects of omnivorous filter-feeding fish and nutrient enrichment on the plankton community and water transparency of a tropical reservoir[J].Freshwater Biology,55(4):767-779.
Neuheimer A B,Thresher R E,Lyle J M,et al,2011.Tolerance limit for fish growth exceeded by warming waters[J].Nature Climate Change,1(2):110-113.
Nobre R L G,Carneiro L S,Panek S E,2019.Fish,including their carcasses,are net nutrient sources to the water column of a eutrophic lake[J].Frontiers in Ecology and Evolution,7:1-9.
Parmenter R R,Lamarra V A,1991.Nutrient cycling in a freshwater marsh the decomposition of fish and waterfowl carrion[J].Limnology and Oceanography,36(5):976-987.
Peck M A,Katersky R S,Menard L M,et al,2003.The effect of body size on food consumption,absorption efficiency,respiration,and ammonia excretion by the inland silverside,Menidia beryllina (Cope)(Osteichthyes:Atherinidae)[J].Journal of Applied Ichthyology,19:195-201.
Schaus M H,Vanni M J,Wissing T E,1997.Nitrogen and phosphorus excretion by detritivorous gizzard shad in a reservoir[J].Limnology and Oceanography,42(6):1386-1397.
Schindler D E,Kitchell J F,He X,et al,1993.Food-web structure and phosphorus cycling in lakes[J].Transactions of the American Fisheries Society,122(5):756-772.
Shostell J,Bukaveckas P A,2004.Seasonal and interannual variation in nutrient fluxes from tributary inputs,consumer recycling and algal growth in a eutrophic river impoundment[J].Aquatic Ecology,38:359-373.
Smith V H,1979.Nutrient dependence of primary productivity in lakes[J].Limnology and Oceanography,24(6):1051-1064.
Susana R,2004.Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate[J].Freshwater Biology,49:1593-1607.
Symons C C,Schulhof M A,Cavalheri H B,et al,2018.Antagonistic effects of temperature and dissolved organic Carbonon fish growth in California mountain lakes[J].Oecologia,189(1):231-241.
Torres L E,Vanni M J,2007.Stoichiometry of nutrient excretion by fish:interspecific variation in a hypereutrophic lake[J].Oikos,116(2):259-270.
Vanni M J,2006.Nutrient cycling by fish supports relatively more primary production as lake productivity increases[J].Ecology,87(7):1696-1709.
Vanni M J,Boros G,McIntyre P B,2013.When are fish sources vs.sinks of nutrients in lake ecosystems?[J].Ecology,94(10):2195-2206.
Williamson T J,Vanni M J,Conroy J D,2018.The importance of nutrient supply by fish excretion and watershed streams to a eutrophic lake varies with temporal scale over 19years[J].Biogeochemistry,140(2):233-253.
Zhang L B,Wang Q S,Ding L L,et al,2009.Controlling of phytoplankton by zooplankton in eutrophic waters[J].Ecology and Environmental Sciences,18(1):64-67.
Zimmer K D,Herwig B R,Laurich L M,2006.Nutrient excretion by fish in wetland ecosystems and its potential to support algal production[J].Limnology and Oceanography,51:197-207.
基本信息:
DOI:10.15928/j.1674-3075.202307240199
中图分类号:S931.1
引用信息:
[1]唐海滨,张三峰,朱利明等.小江不同食性鱼类氮磷排泄及其对养分循环的影响[J].水生态学杂志,2024,45(05):76-84.DOI:10.15928/j.1674-3075.202307240199.
基金信息:
国家重点研发计划课题(2022YFC3203905); 南水北调中线水源有限责任公司项目[ZSY/YG-ZX(2023)033]; 国家自然科学基金(51779157,51679153); 武汉市知识创新专项基础研究项目(2022020801010171); 中国三峡集团有限公司资助项目(0799253)